810 Completions
§10.1 Topologies and completions.
$G=$ topological abelian group
$\left(\begin{array}{cccc}\text { a topological space } X & \text { is called Yauschorff, if } \forall \\ x_{1}, x_{2} \in X & \exists U_{i} & \text { sit. } \quad U_{i} \cap U_{j}=\phi\end{array}\right)$

Fact 1) $G=$ Hausdorff $\Leftrightarrow$ \{o\} is closed in $G$, diagonal dosed
2) the topology of $G$ is uniquely determined by the neighborhoods of $O$ in $G$.

$$
H_{g}:=\bigcap_{U \rightarrow g: \text { open }} U \quad H:=H_{0}
$$

Fact 1) $H_{g}=g+H$
2) $\forall h \in H \Rightarrow H=h+H$
3) $H=-H$

2).

$$
\begin{aligned}
& =\bigcap_{V \rightarrow h: \text { qeen }} V=H_{h}=h+H
\end{aligned}
$$

3). $H=\bigcap_{V \rightarrow 0: \text { open }}(-V)=-\bigcap_{V \text { Foipen }}=-H$

Lemma 10.1. $H:=\bigcap_{U \rightarrow 0 \text { open }} U$
i) $H<G$
ii) $H=\overline{\{0\}}$
iii) $G / H=$ Hausdorff.
iv) $G=H$ lausborff $\Leftrightarrow H=0$

Pf i) $h_{1}-h_{2} \stackrel{(3)}{\in} h_{1}+H \stackrel{(2)}{=} H$
ii) $x \in \overline{\{0\}} \Leftrightarrow\left(0 \in U^{c} \stackrel{U \text { ipen }}{\Rightarrow} x \in U^{c}\right)$

$$
\Leftrightarrow(x \in U \stackrel{\text { U.open }}{\Rightarrow} 0 \in U)
$$

$$
\begin{aligned}
& \Leftrightarrow \quad 0 \in H_{x} \stackrel{(1)}{=} x+H \\
& \Leftrightarrow \quad x \in-H \stackrel{(3)}{=} H
\end{aligned}
$$

iii) $G / H=$ Hausdorff $\Leftrightarrow\{H\} \in G / H$ is closed
$\Leftrightarrow H \subseteq G$ is closed
iv)

$$
\begin{aligned}
G=\text { Hausdorff } & \Leftrightarrow\{0\}=\text { closed } \\
& \Leftrightarrow\{0\}=\overline{\{0\}}=H \\
& \Leftrightarrow H=0 .
\end{aligned}
$$

Cauchy sequence in $G$

$$
\begin{aligned}
& C=\left\{\left(x_{1}, x_{2}, \cdots\right) \mid x_{i} \in G, \forall U \neq 0 \text {.pen. } \exists N \text { set. } x_{i}-x_{j} \in U \quad \forall i, j>N\right\} \\
& \left(x_{0}\right) \sim\left(y_{v}\right) \stackrel{\text { def }}{\Leftrightarrow} x_{v}-y_{v} \rightarrow 0 \text { in } G \\
& \uparrow_{i . ., ~} \forall U=0, \exists N \mathrm{six} \text {. } \\
& x_{0}-y_{0} \in U \quad \forall v>N
\end{aligned}
$$

Completion of $G$

$$
\widehat{G}:=C / \sim \quad\left[\left(x_{0}\right)\right]+\left[\left(y_{0}\right)\right]:=\left[\left(x_{0}+y_{0}\right)\right]
$$

$\phi: G \rightarrow \hat{G} \quad g \mapsto[(g, g, \cdots)]$
e.g. $\otimes \hookrightarrow \mathbb{R}$.

Fact: 1) $\operatorname{ker} \phi=\bigcap U$
Uso open
2) $\phi=i j \Leftrightarrow G=H$ hausdorff.

Pf: $\quad x \in \operatorname{kev} \phi \Leftrightarrow(x, x, \cdots) \sim(0,0, \cdots)$

$$
\begin{aligned}
& \Leftrightarrow \quad x \rightarrow 0 \text { in } G \\
& \Leftrightarrow \quad x \in U, \forall U \rightarrow 0 \text { open }
\end{aligned}
$$

- $\forall f: G \rightarrow H$ continuous $\Rightarrow \hat{f}: \hat{G} \rightarrow \hat{H}$

$$
\cdot G \xrightarrow{f} H \xrightarrow{g} K \Rightarrow \hat{G} \xrightarrow{\hat{f}} \hat{H} \xrightarrow{\hat{g}} \hat{K}
$$

Let $G$ be a top. gp with system of neighborhoods consisting of sulpps

$$
G=G_{0}>G_{1}>G_{2}>\ldots .
$$

e.g. p-adic topology on $\mathbb{Z}$ :

$$
\mathbb{Z} \supseteq p \mathbb{Z} \supseteq p^{2} \mathbb{Z} \supseteq \cdots
$$

Fact: $G_{n}$ are both open and closed $\forall n$.
of: open $V$
closed: $G_{n}=$ open $\Rightarrow g+G_{n}=$ open $\forall g \in G_{n}$

$$
\begin{aligned}
& \Rightarrow \underset{g \notin G_{n}}{\bigcup}\left(g+G_{n}\right)=\text { open } \\
& \Rightarrow G_{n}=G{\underset{g \& G}{ }}_{\bigcup}\left(g+G_{n}\right) \quad \text { closed. }
\end{aligned}
$$

inverse limits
inverse system

$$
\begin{aligned}
& \cdots A_{n+1} \xrightarrow{\theta_{n+1}} A_{n} \xrightarrow{\theta_{n}} A_{n-1} \rightarrow \cdots \xrightarrow{\theta_{2}} A_{1} \xrightarrow{\theta_{1}} A_{0} \\
& \lim _{n}^{\leftarrow} A_{n}:=\left\{\left(a_{n}\right) \in \prod_{n=0}^{\infty} A_{n} \mid \theta_{n+1}\left(a_{n+1}\right)=a_{n}\right\} \\
&\left(a_{n}\right)+\left(b_{n}\right):=\left(a_{n}+b_{n}\right)
\end{aligned}
$$

Lemma(Durely algebraic definition of completion)

$$
\hat{G} \cong \nLeftarrow G / G_{n}
$$

In particular, $k G / G_{n}$ doesn't depend on the choice of $\left\{G_{n}\right\}$. Pf: $\forall\left[\left(x_{2}\right)\right] \in \widehat{G}, \forall n \geqslant 0$

$$
\begin{aligned}
& \xi_{n}:=x_{v}+G_{n} \quad v \gg 0 . \\
& \Rightarrow \theta_{n+1}\left(\xi_{n+1}\right)=\xi_{n} \quad \theta_{n+1}: G / G_{n+1} \rightarrow G / G_{n} \\
& \Rightarrow\left(\xi_{n}\right)_{n} \in \stackrel{\ell}{\leftarrow} G / G_{n} \\
& {\left[\left(x_{0}\right)\right] \in \text { ker } \Leftrightarrow\left(\xi_{n}\right)_{n}=0} \\
& \Leftrightarrow \quad \forall n, x_{v} \in G_{n} \quad \forall v \gg 0 \\
& \Leftrightarrow\left(x_{1}, x_{2}, \cdots\right) \sim(0,0, \cdots) \\
& \Leftrightarrow\left[\left(x_{0}\right)\right]=0 \text {. } \\
& \forall\left(a_{v}\right) \in k G / G_{n} \\
& \forall x_{\nu} \in a_{\nu} \quad \forall \nu \Rightarrow x_{\nu+1}-x_{\nu} \in G_{\nu} \\
& \Rightarrow \quad x_{\nu+\omega}-x_{\nu}=\left(x_{\nu+\omega}-x_{\nu+\omega-1}\right)+\left(x_{\nu+\omega-1}-x_{\nu+\omega-2}\right) \\
& +\cdots+\left(x_{v+1}-x_{0}\right) \in G_{v} \\
& \Rightarrow\left[\left(x_{v}\right)\right] \in \hat{G} \text { with }\left[\left(x_{0}\right)\right] \mapsto\left(a_{v}\right) .
\end{aligned}
$$

$\cdots \rightarrow A_{2} \rightarrow A_{1} \rightarrow A_{0}$ is called surjeaive gostem e.g. $\quad \cdots \rightarrow G / G_{2} \rightarrow G / G_{1} \rightarrow \neg / G_{0}$.
exact sequence of inverse systems
 exact
$0 \rightarrow\left\{A_{n}\right\} \rightarrow\left\{B_{n}\right\} \rightarrow\left\{C_{n}\right\} \rightarrow 0 \quad$ exact.
$\Rightarrow$ homomorphisms
(*) $\quad 0 \rightarrow \ell A_{n} \rightarrow \operatorname{lt}_{\kappa} B_{n} \rightarrow \operatorname{ľ}_{\kappa} C_{n} \rightarrow 0$
(not always exact!)
Php 10.2 : 1) $\underset{\leftarrow}{\mu}$ is left exact. i.e.
$0 \rightarrow \ell A_{n} \rightarrow \ell_{\kappa} B_{n} \rightarrow \ell_{\kappa} C_{n} \quad$ exact
2) If $\left\{A_{n}\right\}$ is a surjective system, then
$(*)$ is exact.

$$
\begin{aligned}
& \text { Pf: } A:=\prod_{n=0}^{\infty} A_{n}, \quad d^{A}: A \rightarrow A .\left(a_{n}\right)_{n} \mapsto\left(a_{n}-\theta_{n+1}\left(a_{n+1}\right)\right)_{n} \\
& \Rightarrow \underset{\leftarrow}{\mu} A_{n}=\operatorname{ker} d^{A} \\
& 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \text { exact } \\
& 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \text { exact } \\
& \Rightarrow 0 \rightarrow \underset{\leftarrow}{\ln } A_{n} \rightarrow \underset{\leftarrow}{\ln } B_{n} \rightarrow \underset{\leftarrow}{\ell} C_{n} \rightarrow \text { Coterd } A \\
& A_{n+1} \rightarrow A_{n} \quad \forall n \Rightarrow d^{A}=\text { subj } \\
& \Rightarrow \text { Cover } d^{A} \Rightarrow V \\
& \forall\left(a_{n}\right)_{n} \in A \quad x_{0}:=0 \quad \text { find } x_{n} \text { inductively } \\
& \theta_{n+1}\left(x_{n}\right)=x_{n-1}-a_{n-1} \\
& \Rightarrow \quad d^{A}\left(\left(x_{n}\right)\right)=\left(a_{n}\right)
\end{aligned}
$$

Cor $10.3 .0 \rightarrow G^{\prime} \rightarrow G \xrightarrow{P} G^{\prime \prime} \rightarrow 0$ exaa
topologies $G \leadsto\left\{G_{n}\right\}$
induced top. $G^{\prime} \leadsto G^{\prime} \cap G_{n}$
$G^{\prime \prime} \longmapsto P G_{n}$
Then $0 \rightarrow \hat{G^{\prime}} \rightarrow \hat{G} \rightarrow \widehat{G^{\prime \prime}} \rightarrow 0$ exact.
Pf: $\quad 0 \rightarrow \frac{G}{G^{\prime} \cap G_{n}} \rightarrow \frac{G}{G_{n}} \rightarrow \frac{G^{\prime \prime}}{P G_{n}} \rightarrow 0$ exact 口

Cor 10.4 i) $\hat{G}_{n}$ is a subgroup of $\hat{G}$

$$
\text { ii) } \hat{G} / \hat{G}_{n} \simeq G / G_{n}
$$

Pf: $\quad 0 \rightarrow G_{n} \rightarrow G \rightarrow G / G_{n} \rightarrow 0$ exact

$$
\Rightarrow 0 \rightarrow \hat{G}_{n} \rightarrow \hat{G} \rightarrow G / G_{n} \rightarrow 0 \quad \text { exact }
$$

$\operatorname{Pop} 105 \hat{\hat{G}} \cong \widehat{G}$
阬: $\hat{\hat{G}}=\kappa \stackrel{h}{\kappa} / \hat{G}_{n}=h \quad G / G_{n}=\widehat{G}$

Def: $G$ is called complete if $G \xrightarrow{\sim} \hat{G}$.

- completion of $G$ is complete.
- Compleze $\Rightarrow$ hausdorff.
a-adic topology:
- $A=$ ring, $\pi \triangleleft A \quad G=A, \quad G_{n}:=\pi^{n}$
$\Rightarrow$ a-abic-ropalogy on $A\left(\right.$ defined by $\left.G_{n}\right)$
in $A$ is a topological ring (is. rig operators are cont.)
$\leadsto$ completion $\hat{A}=$ topological ring.

$$
\Leftrightarrow \phi: A \rightarrow \hat{A} \quad \operatorname{ker} \phi=\bigcap_{n} \pi^{n}
$$

- $M=A$-module. $G=M, G_{n}=z^{n} M$
$\leadsto 4$-topology on $M$. (Coffined by $\left.G_{n}\right)$
$\mu$ completion $\hat{M}=$ topological $\hat{A}$-module
(ie. $\hat{A} \times \hat{M} \rightarrow \hat{M}$ cont.)
- $\forall f: M \rightarrow N$

$$
\begin{aligned}
& f\left(\pi^{n} M\right)=\pi^{n} f(M) \subseteq \pi^{n} N \\
\Rightarrow & f \text { is continuous } \\
\Rightarrow & \hat{f}: \hat{M} \rightarrow \hat{N}
\end{aligned}
$$

§10.2 Filltrations

$$
M=A-\text { module. }
$$

- filtration of $M$

$$
M=M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \cdots \quad \text { (M is subnadules) }
$$

denote by $\left(M_{n}\right)$

- $\frac{\pi \text {-filtration, if } \pi M_{n} \subseteq M_{n+1} \quad \forall n}{}$
- Stall e $2 \pi$-filtration, if it is 2 -filtration, and

$$
\pi M_{n}=M_{n+1} \quad n \gg 0 .
$$

eng. $\left(\pi^{n} M\right)^{\prime}$ is a stable 2 -filtration.

Lem 10.6 any two stable x-filtrations has bounded difference.
ie. $M_{n} \subseteq M \supseteq M_{n}^{\prime}$ stable,

$$
\Rightarrow \exists n_{0} \in \mathbb{N} \text { sit. }\left\{\begin{array}{l}
M_{n+n_{0}} \subseteq M_{n}^{\prime} \\
M_{n+n_{0}}^{\prime} \subseteq M_{n}
\end{array}\right.
$$

(12) In particular, induce the same top. on $M .(2$-topology $)$

Pf: WMA: $M_{n}^{\prime}=a^{n} M$.

$$
\begin{aligned}
& \exists n_{0} \text { s.t. } \quad \text { U } M_{n}=M_{n+1} \forall n \geqslant n_{0} \\
& M_{n+n_{0}}^{\prime}=u^{n+n_{0}} M \subseteq u^{n} M \subseteq M_{n} \\
& M_{n+n_{0}}=u^{n} M_{n_{0}} \subseteq \dot{u}^{n} M=M_{n}^{\prime}
\end{aligned}
$$

$\oint 10.3$ graded rings and modules
graded ring $A$ :

$$
\begin{gathered}
\swarrow^{\text {ring }}=_{n=0}^{\infty} A_{n}^{\text {subgroup }} \quad \text { satisfying } \\
A_{m} \cdot A_{n} \subseteq A_{m+n} \quad \forall m, n \geqslant 0 .
\end{gathered}
$$

Fact:1) $A_{0} \subseteq A$ subring
2) $A_{+}=\bigoplus_{n=1}^{\infty} A_{n}$ ideal of $A$.

A-madich subgups
graded A-module $M$ :

$$
\begin{aligned}
& M: \quad \ell^{A-\text { madul }}={\underset{M}{n=0}}_{\infty}^{@_{n}} M_{n}^{\text {sug grups }} \text { satisfing } \\
& A_{m} M_{n} \subseteq M_{m+n}
\end{aligned}
$$

Fact: $M_{n}=A_{0}-\operatorname{module}$
chonogeneous element of dejree $n \stackrel{\text { def }}{\Longleftrightarrow} x \in M_{n}$.

$$
\forall y \in M \Rightarrow y=\sum_{n=0}^{\infty} y_{n}, y_{n} \in M_{n}
$$

$\rightarrow$ homogeneous components of y
homomorphism of graded $A$-module $=A$-mod. com.

$$
f=M \rightarrow N \text { sit. } f\left(M_{n}\right) \subseteq N_{n} \quad \forall n \geqslant 0 .
$$

Prop 10.7 . $A=$ graded ring. TFAE.
i) $A=$ noetherian
ii) $A_{0}=$ noetherian \& $A=f \cdot g . A_{0}$ alg.

Pf: ii) $\Rightarrow$ i) clear (Hilbert's basis ohm $(7.6)$ )

$$
\begin{gathered}
\text { i) } \Rightarrow \text { ii) } A_{0} \cong A / A_{+} \Rightarrow A_{0}=\text { noeth. } \\
A_{+} \triangleleft A \Rightarrow f_{. g} \Rightarrow \exists x_{1}, \cdots, x_{s} \in A_{+} \text {s.t. } \\
A_{+}=\sum_{i=1}^{s} A \cdot x_{i} \text { (wMA: } x_{i} \text { homog.) } \\
A^{\prime}:=A_{0}\left[x_{1}, \cdots, x_{s}\right] \subseteq A .
\end{gathered}
$$

We show $A_{n} \subseteq A^{\prime}$ inductively:
$n=0 \quad \checkmark$ assume $A_{n-1} \subseteq A^{\prime}$.

$$
\begin{align*}
\forall y \in A_{n} & \Rightarrow y=\sum_{i=1}^{s} a_{i} x_{i} \quad \operatorname{deg} a_{i}=n-\operatorname{deg} x_{i} \\
& \Rightarrow y \in \sum_{i=1}^{s} A^{\prime} \cdot x_{i} \subseteq A^{\prime} \tag{15}
\end{align*}
$$

$A=\operatorname{ring}\left(n_{0} t\right.$ graded $) . \lambda \Delta A$
$\Rightarrow$ graded ring: $A^{*}=\bigoplus_{n=0}^{\infty} x^{n} \quad A \subseteq A^{*} \subseteq A[x]$
$M=A$-module with $a$-filiration $M n$.
$\Rightarrow$ graded $A^{*}$-module : $\quad M^{*}=\bigoplus_{n=0}^{\infty} M_{n}$

Fact: $A=$ noeth. $\Rightarrow A^{*}=$ noeth.

Lemilo.8: $A=$ noeth. $M=f . j . A$-modul. $. ~\left(M_{n}\right)=2 x$ filltration TFAE:
i) $M^{*}=f \cdot g \cdot A^{*}-\bmod$.
ii) $\left(M_{n}\right)=$ stable.

听: $M_{n}=f \cdot g, A-\bmod \Rightarrow Q_{n}:=\underset{r=0}{n} M_{r}=f \cdot g, A-\bmod$

$$
\Rightarrow M_{n}^{*}=A^{*} Q_{n}=\left(\underset{r=0}{n} M_{r}\right) \oplus\left(\underset{r=1}{\infty} z^{r} M_{n}\right)
$$

f.g. $A^{*}-\bmod$

$$
\begin{aligned}
& M_{1}^{*} \subseteq M_{2}^{*} \subseteq \cdots \subseteq M^{*} \\
& M^{*}=\bigcup_{i=1}^{\infty} M_{i}^{*}
\end{aligned}
$$

$$
M^{*}=f \cdot g \cdot A^{*}-\bmod \Leftrightarrow\left\{M_{i}^{*}\right\} \text { stop }
$$

$\Leftrightarrow M^{*}=M_{n_{0}}^{*}$ for some $n_{0}$
$\Leftrightarrow M_{n_{0}+r}=ひ^{r} M_{n_{0}} \quad \forall r \geqslant 0$
$\Leftrightarrow$ stable

Pop 10.9 (Arin-Rees Lemma) $A=$ neth. $\quad 2 \nabla A, M=$ f. $s, A$-nod.

$$
\begin{aligned}
& \left(M_{n}\right)=\text { stable } 2 \text {-file. of } M . \\
& M^{\prime} \subseteq M \text { submod } \Rightarrow\left(M^{\prime} \cap M_{n}\right)=\text { Stable } 2 \text {-flee. of } M
\end{aligned}
$$

pf: $\quad \pi\left(M^{\prime} \cap M_{n}\right) \subseteq \pi M^{\prime} \cap M_{n} \subseteq M^{\prime} \cap M_{n+1} \Rightarrow 2-f_{i} l$.

$$
\begin{align*}
\left(M_{n}\right)=\text { stable } & \Rightarrow M^{*}=f \cdot g \cdot A^{*}-\bmod \\
& \Rightarrow M^{*}=f \cdot g \cdot A^{*}-\bmod \quad\left(A^{*}=\text { noeth. }\right) \\
& \Rightarrow\left(M^{\prime} \cap M_{n}\right)=\text { stable. }
\end{align*}
$$

Cor 10.10 (usual version) $\exists k$ sit. $x^{n} M \cap M^{\prime}=a^{n-k}\left(\left(a^{k} M\right) \cap M^{\prime}\right) \forall n \geqslant k$. pf: $M_{n}:=\pi^{n} M$

The 10.11 (another version): $\quad A=$ neth. $\Delta \nabla A, M=f . g . \quad M^{\prime} \subseteq M$ sub mod.
$\Rightarrow \Sigma^{n} M^{\prime} \& \mathbb{U}^{n} M \cap M^{\prime}$ has bounded difference

$$
\Rightarrow \pi \text {-top. of } M^{\prime}=\text { induced top by } \pi \text {-top of } M^{\prime} \text {. }
$$

Prop 10.12 (Bractness of adic completions) $\quad A=$ noesh. $\quad x \triangleleft A$
$M=f . g . A$-mod. $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ exact. Then

$$
0 \rightarrow \underbrace{\hat{M^{\prime}} \rightarrow \hat{M}}_{2 \text {-adic comptaions }} \rightarrow \widehat{M^{\prime \prime}} \rightarrow 0 \text { exaca }
$$

pf : $(10.11)+(10.3)$
$M m$ two $\hat{A}$-module

- $M \otimes_{A} \widehat{A}$ \& $\hat{M}$ (relation?)
natural $\widehat{A}$-hom:

$$
M \rightarrow \hat{M} \quad m \mapsto(m, m, \cdots)
$$

and

$$
\begin{gathered}
\hat{A} \otimes_{A} M \rightarrow \widehat{A} \otimes_{A} \hat{M} \rightarrow \hat{A} \otimes_{\widehat{A}} \widehat{M} \xrightarrow{\longrightarrow} \widehat{M} \\
\left(a_{1}, a_{2}, \cdots\right) \otimes_{A} m \quad\left(a_{1} m, a_{2} m, \cdots\right)
\end{gathered}
$$

prop10.13: $A=$ ring. $M=f . g$.
i) $\hat{A} \otimes_{A} M \rightarrow \hat{M}$
ii) $A=$ noeth. $\Rightarrow \hat{A} \otimes_{A} M \xrightarrow{\sim} \widehat{M}$

Pf: $\quad 0 \rightarrow N \rightarrow \underset{\frac{11}{F}}{A^{\otimes n}} \rightarrow M \rightarrow 0 \quad$ exaut

$$
\begin{aligned}
& \hat{A} \otimes N \rightarrow \hat{A} \otimes_{A} F \longrightarrow \hat{A} \otimes_{A} M \rightarrow 0
\end{aligned}
$$

$$
\begin{align*}
& \pi=\operatorname{suj} j \Rightarrow \varphi_{M}=\operatorname{suj} j . \Rightarrow \varphi_{N}=\operatorname{sunj} . \Rightarrow \varphi_{M}=\operatorname{inj} . \tag{10.3}
\end{align*}
$$

Prop 10.14. $A=$ noeth. $2 \nabla A \Rightarrow \hat{A}=$ flat $A$-aly.
㫙. $(10.12)+(10.13)+$ chapter 2

Rnk: $M \mapsto \hat{M}$ is NOT exact for nonf.f. modules !

- two funcor coincide on fis molubs.

Php lo. 15 (elementary prporties of $\hat{A}$ ). $A=$ nooth. $\pi \Delta A$.
i) $\hat{\pi}=\hat{A} \pi \cong \hat{A} \otimes_{A} \pi$
ii). $\widehat{x}^{n}=(\hat{x})^{n}$
iii). $u^{n} / य^{n+1} \cong \hat{x}^{n} / \hat{x}^{n+1}$
iv). $\hat{\Delta} \subseteq \operatorname{Rad}(\hat{A}) \quad(J a c o b s o n ~ r a d i c a l) ~$

价：i）．$A=$ moth．$\Rightarrow t=f . g, \stackrel{(10,13)}{\Rightarrow} \hat{A} \otimes A \Delta \xrightarrow[A]{\sim} \hat{\lambda}$

ii）．$\hat{a^{n}} \stackrel{(i)}{=} \hat{A} a^{n} \stackrel{1.18}{=}(\hat{A} 2 x)^{n} \stackrel{(i)}{=}(\hat{\alpha})^{n}$
iii）．

$$
\begin{aligned}
& \text { ii) } \stackrel{(10.4)}{\Rightarrow} \hat{A} / \hat{\hat{r}}^{n} \cong A / x^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{A} / \hat{\alpha}^{n+1} \leftrightharpoons A / a^{n+1} \\
& \hat{x}^{n} / \hat{x}^{n+1} \quad x^{n} / a^{n+1}
\end{aligned}
$$

iv）．$\forall x \in \hat{\kappa} \quad \Rightarrow(1-x)^{-1}=1+x+x^{2}+\cdots \in \hat{A} \quad \forall x \in \hat{\kappa}$

$$
\stackrel{(1.8)}{\Rightarrow} \hat{\alpha} \subseteq \operatorname{Rad}(\hat{A})
$$

Prop $10.16(A, m)=$ noeth + local $. \hat{A}=m$－asdic completion．

$$
\Rightarrow \quad(\hat{A}, \hat{m})=\text { local }
$$

pf：$\hat{A} / \hat{m} \cong A / m \Rightarrow \hat{m}=$ maximal

$$
\hat{m} \subseteq \operatorname{Rad}(\hat{A}) \Rightarrow \hat{m}=\text { unique maximal ideal. }
$$

取完各化丢失多少？
The 10．7（Krull＇s the）$\quad A=$ neth．$\quad u=$ ideal，$M=f . g$ ．

$$
\operatorname{ker}(M \rightarrow \hat{M})=\{x \in M \mid(1+\alpha) x=0 \text { for sane } \alpha \in \Omega\}
$$

Pf: $E:=\operatorname{ker}(M \rightarrow \hat{M})=\bigcap_{n=1}^{\infty} a^{n} M$

$$
\begin{aligned}
\text { RHS } \subseteq L H S: \quad \forall m \in R H S & \Rightarrow m=-\alpha m \text { for some } \alpha \in \pi \\
& \Rightarrow m=(-\alpha)^{n} \cdot m \in \alpha^{n} M \forall n \\
& \Rightarrow m \in L H S
\end{aligned}
$$

$L H S \subseteq$ RHS: restr. topon $E=$ trival $\Rightarrow \Delta E=E$

$$
\left.E \subseteq M \Rightarrow E=f . \delta_{1}\right\}
$$

$$
\stackrel{2.5}{\Rightarrow} \exists \alpha \in \pi \text { s.t. }(1-\alpha) E=0 \text {. }
$$

Rmk: 1) $\delta:=1+2 \pi$

$$
\begin{aligned}
(10.17) & \Rightarrow \operatorname{ker}(A \rightarrow \hat{A})=\operatorname{ker}\left(A \rightarrow S^{-1} A\right) \\
& \Rightarrow S^{-1} A \leftrightarrow \hat{A} \quad \text { inj. }
\end{aligned}
$$

2) Krull's thm false, if $A \neq$ noeth.

$$
\begin{aligned}
& A=\text { nig of } e^{\infty} \text { functions on } \mathbb{R} . \\
& \lambda=\{f \in A \mid f(0)=0\} \triangleleft A \\
& \operatorname{ker}(A \rightarrow \hat{A})=\bigcap_{n=1}^{\infty} 厶^{n}=\left\{f \in A \mid 0=f(0)=f^{\prime}(0)=\cdots\right\}
\end{aligned}
$$

$$
f \in \operatorname{ker}\left(A \rightarrow S^{-1} A\right) \Leftrightarrow(1+\alpha) f=0
$$

$\Leftrightarrow f=0$ in some eighborhood of 0

$$
e^{-\frac{1}{x^{2}}} \in \operatorname{ker}(A-\hat{A}) \backslash \operatorname{ker}\left(A \rightarrow S^{-1} A\right)
$$

$\Rightarrow$ Krull's fails for $A$.

Cor $10.18 \quad A=$ noeth. domain. $\quad x^{x^{(1)}} \triangleleft A$. Then

$$
\cap x^{n}=0 .
$$

Pf: $1+\pi$ contains no zerodivizors

Cor 10.19. $A=$ noeth. $\quad 2 \leq \operatorname{Rad}(A) . \quad M=f . g . \quad$ Then

$$
\cap x^{n} M=0
$$

(the $x$-topology of $M$ is Hansdorff.)
Pf: $(1.9) \Rightarrow 1+\alpha \in A^{x}$

Cor 10.20. $(A, m)=$ noeth. local. $M=f . g$. Then $m$-tupology of $M$ is Hausdorff.
(22) in pariculion, m-top. of $A$ is Hacsdorff.

Face: $\cap q=\cap q=\cap m^{n}=\operatorname{ker}(A \rightarrow \hat{A})=0$ $q=m$-phimay $m^{n} \leq q \leq m$

Co. 10.21. $A=$ noest. $\quad \& \Delta A=$ prime. Then

$$
\operatorname{ker}\left(A \rightarrow A_{g}\right)=\bigcap_{q=q-p \text { pimaxy }}
$$

Pf:

$$
\begin{aligned}
& \cap q^{\prime}=\operatorname{ker}\left(A_{g} \rightarrow \hat{A}_{g}\right)=0 \\
& q^{\prime}=3 A_{2}-p \text { pianay } \\
& \Rightarrow \operatorname{ker}\left(A \xrightarrow{\pi} A_{g}\right)=\pi^{-1}(0) \\
& =\pi^{-1}\left(\bigcap \quad q^{\prime}\right) \\
& \xi^{\prime}=\text { SARP解many } \\
& =\bigcap q \\
& q=2-\text { primany }
\end{aligned}
$$

$\oint 10.4$ the associated graded ring.
$A=$ ring, $\quad \Delta \triangleleft A . \quad \Rightarrow$ graded ring

$$
\begin{aligned}
& G(A)=G_{a 1}(A):=\prod_{n=0}^{\infty} x^{n} / z^{n+1} \quad\left(厶^{0}:=A\right) \\
& \overline{a_{n_{1}}} \cdot \overline{a_{n_{2}}}:=\overline{a_{n_{1}} a_{n_{2}}}(\text { well-defnod })
\end{aligned}
$$

$M=A$-module, $\left(M_{n}\right)=2$-filtration $\Rightarrow$ graded $G(A)$-module:

$$
\begin{aligned}
G(M) & =\bigoplus_{n=0}^{\infty} M_{n} / M_{n+1} \\
& \overline{a_{n_{1}}} \cdot \bar{m}_{n_{2}}==\overline{a_{n_{1}} m_{n_{2}}} \quad \text { (well-defned) }
\end{aligned}
$$

Prop 10.22 $\quad A=$ noeth. $\quad u \& A$. Then
i) $G_{2 x}(A)=$ noeth.
ii) $G_{\bar{\mu}}(A) \cong G_{\hat{\pi}}(\hat{A})$ (as graded rings)
iii) $M=$ fig. $\quad\left(M_{n}\right)=\pi$-filtration.

$$
\begin{aligned}
\left(M_{n}\right)=\text { stable } & \Rightarrow G(M)=f \cdot g \cdot G(A)-\bmod . \\
& \neq
\end{aligned}
$$

Pf: i). $\bar{u}=\sum_{i=1}^{S} A x_{i} \Rightarrow \pi / u^{2}=\sum_{i=1}^{S}(A / \bar{u}) \cdot \bar{x}_{i}$

$$
\begin{aligned}
\bar{x}^{n} & =\sum_{|I|=n} A x^{I} \Rightarrow \pi^{n} / \pi^{n+1}=\sum_{i=1}^{s}(A / \mid x) \cdot \bar{x}^{I} \\
& \Rightarrow G(A)=(A / a)\left[\bar{x}_{1}, \cdots, \bar{x}_{s}\right] \\
& \Rightarrow G(A)=\text { noesh. }
\end{aligned}
$$

ii). ( 10.15 iii) $\Rightarrow \pi^{n} / a^{n+1} \cong \hat{u}^{n} / \hat{u}^{n+1} \Rightarrow v$
iii). Stable $\Rightarrow \exists n_{0}$ six. $M_{n_{0}+r}=2^{r} M_{n_{0}} \quad \forall r \geqslant 0$.

$$
\Rightarrow \quad G_{n_{0}+r}(M)=G_{r}(A) G_{n_{0}}(M) \quad \forall r \geqslant 0
$$

$\Rightarrow G(M)$ generated by $\bigoplus_{n \leqslant n_{0}} G_{n}(M)$

$$
\begin{aligned}
\cdot M=f . g . & \Rightarrow M=\text { noeth. A-mod } \\
& \Rightarrow G_{n}(M)=\text { noeth. } A / x-\bmod . \\
& \Rightarrow G_{n}(M)=f \cdot g . A / x-\bmod . \\
& \Rightarrow G(M)=f . g . G(A)-\bmod .
\end{aligned}
$$

想证: $A=$ noest $\Rightarrow \hat{A}=$ noeth.

Lem 10.23: $\phi: A \rightarrow B$ hom. of filtered ops $\left(\right.$ i.e. $\left.\phi\left(A_{n}\right) \subseteq B_{n}\right)$, Then
i) $G(\phi)=i n j$. $\Rightarrow \hat{\phi}=i n j$.

$$
G(\phi): G(A) \rightarrow G(B)
$$

ii) $G(\phi)=\operatorname{surj} \Rightarrow \hat{\phi}=\operatorname{surj}$

$$
\hat{\phi}: \hat{A} \rightarrow \hat{B}
$$

pf: $0 \rightarrow A_{n} / A_{n+1} \rightarrow A / A_{n+1} \rightarrow A / A_{n} \rightarrow 0$

$$
\begin{aligned}
& \downarrow G_{n}(\phi) \\
& 0 \downarrow \phi_{n+1} \downarrow \phi_{n} \\
& B_{n} / B_{n+1} \rightarrow B / B_{n+1} \rightarrow B / B_{n} \rightarrow 0 \\
& \rightarrow \operatorname{ker} G_{n}(\phi) \rightarrow \operatorname{ker} \phi_{n+1} \rightarrow \operatorname{Ker} \phi_{n} \\
& \rightarrow \operatorname{coker} G_{n}(\phi) \rightarrow \text { coker } \phi_{n+1} \rightarrow \text { coker } \phi_{n} \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { inductively } \\
& G(\phi)=\operatorname{inj} \Rightarrow \phi_{n}=i n j \Rightarrow \hat{\phi}=\ln \phi_{n}=i n j \\
& G(\phi)=\operatorname{sur} j \Rightarrow\left\{\begin{array}{l}
\phi_{n}=\operatorname{surj} \\
\operatorname{ker} \phi_{n+1} \rightarrow \operatorname{ker} \phi_{n} \Rightarrow\left(\operatorname{ker} \phi_{n}\right)=\operatorname{sur} \bar{j} \cdot \text { sytt. }
\end{array}\right. \\
& 0 \rightarrow\left\{\operatorname{ker} \phi_{n}\right\} \rightarrow\left\{A / A_{n}\right\} \xrightarrow{\phi_{n}}\left\{B / B_{n}\right\} \rightarrow 0 \\
& \Rightarrow \hat{\phi}=\sin ^{-}
\end{aligned}
$$

Prop 10.24 : $A=$ ring, $\pi \triangleleft A, M=A$-mod, $\left(M_{n}\right)=\pi$-filtration.
Suppose A $x$-adic complace \& M Hausdorff. Then

$$
G(M)=f \cdot g, \quad G(A)-\text { module } \Rightarrow M=f \cdot g . \quad A-\bmod .
$$

阬: $G(M)=f . g . \Rightarrow \exists$ sytten of homogenerous generators

$$
\begin{gathered}
\xi_{1}, \cdots, \xi_{r} \text { of } G(M) \\
\binom{\text { assume } \operatorname{deg} \xi_{i}=n_{i}}{\forall x_{i} \in \xi_{i} \in M_{n_{i}} / M_{n_{i}+1}}
\end{gathered}
$$

$A(n)=\pi$-fibereed $A$-module defned by

$$
\begin{aligned}
& \Rightarrow F=\bigoplus_{i=1}^{r} \underbrace{A\left(n_{i}\right)}_{A \cdot e_{i}} \text { u-filtered } A \text {-module. }
\end{aligned}
$$

$\Rightarrow \phi: F \rightarrow M$ chomo. of 2 -filtered $A$-modulas $e_{i} \mapsto x_{i}$
$\Rightarrow G(\phi): G(F) \rightarrow G(M)$ chom. of $G(A)$-modules.
Construction $\Rightarrow G(\phi)=$ surj $\Rightarrow \hat{\phi}=$ surj

$$
\begin{aligned}
& F \xrightarrow{\phi} M \\
& \alpha \downarrow \cong \hat{\cong} \\
& \hat{F} \xrightarrow{\hat{\phi}} \widehat{M} \\
& \left.\begin{array}{l}
F=\text { free } \Rightarrow \alpha=i s o . \\
M=\text { Housdorf } \Rightarrow \beta=\text { inj }
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\beta=\text { iso } \\
\phi=\text { sur } j \Rightarrow M=f . g .
\end{array}\right.
\end{aligned}
$$

( $\mu_{n}$ )
Cor 10.25: $A=2$-adic complese. $M=f . g$ with $2 \pi$-filiration s.t. top. Haucdorf $G(M)=$ noefh. $G(A)-\bmod . \Rightarrow M=$ noeth. $A$-mod.

Pf: $\forall M^{\prime} \subseteq M$ submodule.

$$
M_{n}^{\prime}:=M^{\prime} \cap M_{n} \Rightarrow\left\{\begin{array}{l}
\text { S-filtration } \\
\text { Hanschiff. }
\end{array}\right.
$$

$$
\Rightarrow \quad G\left(M^{\prime}\right) \subseteq G(M) \quad f . g .
$$

$G(\mu)=$ math .

$$
\stackrel{(M)=\text { mash. }}{\Rightarrow} G\left(M^{\prime}\right)=f \cdot g . \quad G(A)-\operatorname{modu} l e
$$

(10.24)

$$
\Rightarrow \quad M^{\prime}=f \cdot g
$$

Thm 10.26: $A=$ noeth. $\quad 4 \triangleleft A \Rightarrow \hat{A}=$ noosh.
Pf. $A=$ noeth $\stackrel{10,22}{\Rightarrow} G_{\hat{a}}(\hat{A})=G_{2}(A)=$ noeth. $\stackrel{10,25}{\Rightarrow} \hat{A}=$ noeth. $口$
Cor 10.27: $A=$ noeth. $\Rightarrow A\left[\left[x_{1}, \cdots, x_{n}\right]=\right.$ noeth.
(28) 听: $2 x=\left(x_{1}, \cdots, x_{n}\right) \triangleleft A\left[x_{1}, \cdots, x_{n}\right]$

